Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
mSphere ; 9(4): e0011024, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38501830

RESUMEN

Candida albicans is a common human fungal pathogen that is also a commensal of the oral cavity and gastrointestinal tract. C. albicans pathogenesis is linked to its transition from budding yeast to filamentous morphologies including hyphae and pseudohyphae. The centrality of this virulence trait to C. albicans pathobiology has resulted in extensive characterization of a wide range of factors associated with filamentation with a strong focus on transcriptional regulation. The vast majority of these experiments have used in vitro conditions to induce the yeast-to-filament transition. Taking advantage of in vivo approaches to quantitatively characterize both morphology and gene expression during filamentation during mammalian infection, we have investigated the dynamics of these two aspects of filamentation in vivo and compared them to in vitro filament induction with "host-like" tissue culture media supplemented with serum at mammalian body temperature. Although filamentation shares many common features in the two conditions, we have found two significant differences. First, alternative carbon metabolism genes are expressed early during in vitro filamentation and late in vivo, suggesting significant differences in glucose availability. Second, C. albicans begins a hyphae-to-yeast transition after 4-h incubation while we find little evidence of hyphae-to-yeast transition in vivo up to 24 h post-infection. We show that the low rate of in vivo hyphae-to-yeast transition is likely due to the very low expression of PES1, a key driver of lateral yeast in vitro and that heterologous expression of PES1 is sufficient to trigger lateral yeast formation in vivo.IMPORTANCECandida albicans filamentation is correlated with virulence and is an intensively studied aspect of C. albicans biology. The vast majority of studies on C. albicans filamentation are based on in vitro induction of hyphae and pseudohyphae. Here we used an in vivo filamentation assay and in vivo expression profiling to compare the tempo of morphogenesis and gene expression between in vitro and in vivo filamentation. Although the hyphal gene expression profile is induced rapidly in both conditions, it remains stably expressed over a 12-h time course in vivo while it peaks after 4 h in vitro and is reduced. This reduced hyphal gene expression in vitro correlates with reduced hyphae and increased hyphae-to-yeast transition. By contrast, there is little evidence of hyphae-to-yeast transition in vivo.

2.
mSphere ; 9(3): e0078523, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38376205

RESUMEN

Candida albicans is one of the most common causes of superficial and invasive fungal diseases in humans. Its ability to cause disease is closely linked to its ability to undergo a morphological transition from budding yeast to filamentous forms (hyphae and pseudohyphae). The extent to which C. albicans strains isolated from patients undergo filamentation varies significantly. In addition, the filamentation phenotypes of mutants involving transcription factors that positively regulate hyphal morphogenesis can also vary from strain to strain. Here, we characterized the virulence, in vitro and in vivo filamentation, and in vitro and in vivo hypha-associated gene expression profiles for four poorly filamenting C. albicans isolates and their corresponding deletion mutants of the repressor of filamentation NRG1. The two most virulent strains, 57055 and 78048, show robust in vivo filamentation but are predominately yeast phase under in vitro hypha induction; the two low-virulence strains (94015 and 78042) do not undergo filamentation well under either condition. In vitro, deletion of NRG1 increases hyphae formation in the SC5314 derivative SN250, but only pseudohyphae are formed in the clinical isolates. Deletion of NRG1 modestly increased the virulence of 78042, which was accompanied by increased expression of hypha-associated genes without an increase in filamentation. Strikingly, deletion of NRG1 in 78048 reduced filamentation in vivo, expression of candidalysin (ECE1), and virulence without dramatically altering establishment of infection. Thus, the function of the conserved repressor NRG1 in C. albicans shows strain-based heterogeneity during infection.IMPORTANCEClinical isolates of the human fungal pathogen Candida albicans show significant variation in their ability to undergo in vitro filamentation and in the function of well-characterized transcriptional regulators of filamentation. Here, we show that Nrg1, a key repressor of filamentation and filament specific gene expression in standard reference strains, has strain-dependent functions, particularly during infection. Most strikingly, loss of NRG1 function can reduce filamentation, hypha-specific gene expression such as the toxin candidalysin, and virulence in some strains. Our data emphasize that the functions of seemingly fundamental and well-conserved transcriptional regulators such as Nrg1 are contextual with respect to both environment and genetic backgrounds.


Asunto(s)
Candida albicans , Candidiasis , Humanos , Candidiasis/microbiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Virulencia , Neurregulina-1/genética , Neurregulina-1/metabolismo
3.
Front Oncol ; 13: 1295185, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37909019

RESUMEN

Introduction: An attractive, yet unrealized, goal in cancer therapy is repurposing psychiatric drugs that can readily penetrate the blood-brain barrier for the treatment of primary brain tumors and brain metastases. Phenothiazines (PTZs) have demonstrated anti-cancer properties through a variety of mechanisms. However, it remains unclear whether these effects are entirely separate from their activity as dopamine and serotonin receptor (DR/5-HTR) antagonists. Methods: In this study, we evaluated the anti-cancer efficacy of a novel PTZ analog, CWHM-974, that was shown to be 100-1000-fold less potent against DR/5-HTR than its analog fluphenazine (FLU). Results: CWHM-974 was more potent than FLU against a panel of cancer cell lines, thus clearly demonstrating that its anti-cancer effects were independent of DR/5-HTR signaling. Our results further suggested that calmodulin (CaM) binding may be necessary, but not sufficient, to explain the anti-cancer effects of CWHM-974. While both FLU and CWHM-974 induced apoptosis, they induced distinct effects on the cell cycle (G0/G1 and mitotic arrest respectively) suggesting that they may have differential effects on CaM-binding proteins involved in cell cycle regulation. Discussion: Altogether, our findings indicated that the anti-cancer efficacy of the CWHM-974 is separable from DR/5-HTR antagonism. Thus, reducing the toxicity associated with phenothiazines related to DR/5-HTR antagonism may improve the potential to repurpose this class of drugs to treat brain tumors and/or brain metastasis.

4.
bioRxiv ; 2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37790536

RESUMEN

Candida albicans is one of them most common causes of fungal disease in humans and is a commensal member of the human microbiome. The ability of C. albicans to cause disease is tightly correlated with its ability to undergo a morphological transition from budding yeast to a filamentous form (hyphae and pseudohyphae). This morphological transition is accompanied by the induction of a set of well characterized hyphae-associated genes and transcriptional regulators. To date, the vast majority of data regarding this process has been based on in vitro studies of filamentation using a range of inducing conditions. Recently, we developed an in vivo imaging approach that allows the direct characterization of morphological transition during mammalian infection. Here, we couple this imaging assay with in vivo expression profiling to characterize the time course of in vivo filamentation and the accompanying changes in gene expression. We also compare in vivo observations to in vitro filamentation using a medium (RPMI 1640 tissue culture medium with 10% bovine calf serum) widely used to mimic host conditions. From these data, we make the following conclusions regarding in vivo and in vitro filamentation. First, the transcriptional programs regulating filamentation are rapidly induced in vitro and in vivo. Second, the tempo of filamentation in vivo is prolonged relative to in vitro filamentation and the period of high expression of genes associated with that process is also prolonged. Third, hyphae are adapting to changing infection environments after filamentation has reached steady-state.

5.
Nat Commun ; 14(1): 6587, 2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37852972

RESUMEN

Cryptococcus spp. are environmental fungi that first must adapt to the host environment before they can cause life-threatening meningitis in immunocompromised patients. Host CO2 concentrations are 100-fold higher than the external environment and strains unable to grow at host CO2 concentrations are not pathogenic. Using a genetic screening and transcriptional profiling approach, we report that the TOR pathway is critical for C. neoformans adaptation to host CO2 partly through Ypk1-dependent remodeling of phosphatidylserine asymmetry at the plasma membrane. We also describe a C. neoformans ABC/PDR transporter (PDR9) that is highly expressed in CO2-sensitive environmental strains, suppresses CO2-induced phosphatidylserine/phospholipid remodeling, and increases susceptibility to host concentrations of CO2. Interestingly, regulation of plasma membrane lipid asymmetry by the TOR-Ypk1 axis is distinct in C. neoformans compared to S. cerevisiae. Finally, host CO2 concentrations suppress the C. neoformans pathways that respond to host temperature (Mpk1) and pH (Rim101), indicating that host adaptation requires a stringent balance among distinct stress responses.


Asunto(s)
Criptococosis , Cryptococcus neoformans , Humanos , Cryptococcus neoformans/metabolismo , Saccharomyces cerevisiae/metabolismo , Fosfolípidos/metabolismo , Dióxido de Carbono/metabolismo , Fosfatidilserinas/metabolismo , Criptococosis/microbiología , Transportadoras de Casetes de Unión a ATP/metabolismo
6.
mBio ; 14(5): e0152123, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37737633

RESUMEN

IMPORTANCE: Candida albicans is a commensal fungus that colonizes the human oral cavity and gastrointestinal tract but also causes mucosal as well as invasive disease. The expression of virulence traits in C. albicans clinical isolates is heterogeneous and the genetic basis of this heterogeneity is of high interest. The C. albicans reference strain SC5314 is highly invasive and expresses robust filamentation and biofilm formation relative to many other clinical isolates. Here, we show that SC5314 derivatives are heterozygous for the transcription factor Rob1 and contain an allele with a rare gain-of-function SNP that drives filamentation, biofilm formation, and virulence in a model of oropharyngeal candidiasis. These findings explain, in part, the outlier phenotype of the reference strain and highlight the role heterozygosity plays in the strain-to-strain variation of diploid fungal pathogens.


Asunto(s)
Candida albicans , Factores de Transcripción , Humanos , Factores de Transcripción/genética , Alelos , Simbiosis , Biopelículas , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Hifa/metabolismo
7.
Antimicrob Agents Chemother ; 67(10): e0056723, 2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37702508

RESUMEN

Multidrug resistance (MDR) transporters such as ATP-Binding Cassette (ABC) and Major Facilitator Superfamily proteins are important mediators of antifungal drug resistance, particularly with respect to azole class drugs. Consequently, identifying molecules that are not susceptible to this mechanism of resistance is an important goal for new antifungal drug discovery. As part of a project to optimize the antifungal activity of clinically used phenothiazines, we synthesized a fluphenazine derivative (CWHM-974) with 8-fold higher activity against Candida spp. compared to the fluphenazine and with activity against Candida spp. with reduced fluconazole susceptibility due to increased MDR transporters. Here, we show that the improved C. albicans activity is because fluphenazine induces its own resistance by triggering expression of Candida drug resistance (CDR) transporters while CWHM-974 induces expression but does not appear to be a substrate for the transporters or is insensitive to their effects through other mechanisms. We also found that fluphenazine and CWHM-974 are antagonistic with fluconazole in C. albicans but not in C. glabrata, despite inducing CDR1 expression to high levels. Overall, CWHM-974 is one of the few examples of a molecule in which relatively small structural modifications significantly reduced susceptibility to multidrug transporter-mediated resistance.


Asunto(s)
Antifúngicos , Candida albicans , Antifúngicos/farmacología , Antifúngicos/metabolismo , Fluconazol/farmacología , Fluconazol/metabolismo , Flufenazina/farmacología , Flufenazina/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Pruebas de Sensibilidad Microbiana , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Resistencia a Múltiples Medicamentos , Candida , Farmacorresistencia Fúngica/genética
8.
bioRxiv ; 2023 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-37398495

RESUMEN

Candida albicans is a diploid human fungal pathogen that displays significant genomic and phenotypic heterogeneity over a range of virulence traits and in the context of a variety of environmental niches. Here, we show that the effects of Rob1 on biofilm and filamentation virulence traits is dependent on both the specific environmental condition and the clinical strain of C. albicans . The C. albicans reference strain SC5314 is a ROB1 heterozygote with two alleles that differ by a single nucleotide polymorphism at position 946 resulting in a serine or proline containing isoform. An analysis of 224 sequenced C. albicans genomes indicates that SC5314 is the only ROB1 heterozygote documented to date and that the dominant allele contains a proline at position 946. Remarkably, the ROB1 alleles are functionally distinct and the rare ROB1 946S allele supports increased filamentation in vitro and increased biofilm formation in vitro and in vivo, suggesting it is a phenotypic gain-of-function allele. SC5314 is amongst the most highly filamentous and invasive strains characterized to date. Introduction of the ROB1 946S allele into a poorly filamenting clinical isolate increases filamentation and conversion of an SC5314 laboratory strain to a ROB1 946S homozygote increases in vitro filamentation and biofilm formation. In a mouse model of oropharyngeal infection, the predominant ROB1 946P allele establishes a commensal state while the ROB1 946S phenocopies the parent strain and invades into the mucosae. These observations provide an explanation for the distinct phenotypes of SC5314 and highlight the role of heterozygosity as a driver of C. albicans phenotypic heterogeneity. Importance: Candida albicans is a commensal fungus that colonizes human oral cavity and gastrointestinal tracts but also causes mucosal as well as invasive disease. The expression of virulence traits in C. albicans clinical isolates is heterogenous and the genetic basis of this heterogeneity is of high interest. The C. albicans reference strain SC5314 is highly invasive and expresses robust filamentation and biofilm formation relative to many other clinical isolates. Here, we show that SC5314 derivatives are heterozygous for the transcription factor Rob1 and contain an allele with a rare gain-of-function SNP that drives filamentation, biofilm formation, and virulence in a model of oropharyngeal candidiasis. These finding explain, in part, the outlier phenotype of the reference strain and highlight the role of heterozygosity plays in the strain-to-strain variation of diploid fungal pathogens.

9.
Infect Immun ; 91(5): e0010423, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37129514

RESUMEN

C. albicans transitions between budding yeast and filamentous hyphal forms in a process that is tightly associated with its virulence. This transition also occurs after the fungus has been phagocytosed by macrophages. A number of somewhat discordant models have been proposed for the environmental characteristics of the phagolysosome that induce this transition. H. B. Wilson and M. C. Lorenz (Infect Immun 91:e00087-23, 2023, https://doi.org/10.1128/iai.00087-23) revisited these models and found that none of them explained morphogenesis in the macrophage.


Asunto(s)
Candida albicans , Hifa , Virulencia , Macrófagos/microbiología , Fagosomas , Morfogénesis , Proteínas Fúngicas
10.
bioRxiv ; 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37205554

RESUMEN

Multidrug resistance (MDR) transporters such as ATP Binding Cassette (ABC) and Major Facilitator Superfamily (MFS) proteins are important mediators of antifungal drug resistance, particularly with respect to azole class drugs. Consequently, identifying molecules that are not susceptible to this mechanism of resistance is an important goal for new antifungal drug discovery. As part of a project to optimize the antifungal activity of clinically used phenothiazines, we synthesized a fluphenazine derivative (CWHM-974) with 8-fold higher activity against Candida spp. compared to the fluphenazine and with activity against Candida spp. with reduced fluconazole susceptibility due to increased multidrug resistance transporters. Here, we show that the improved C. albicans activity is because fluphenazine induces its own resistance by triggering expression of CDR transporters while CWHM-974 induces expression but does not appear to be a substrate for the transporters or is insensitive to their effects through other mechanisms. We also found that fluphenazine and CWHM-974 are antagonistic with fluconazole in C. albicans but not in C. glabrata , despite inducing CDR1 expression to high levels. Overall, CWHM-974 represents a unique example of a medicinal chemistry-based conversion of chemical scaffold from MDR-sensitive to MDR-resistant and, hence, active against fungi that have developed resistance to clinically used antifungals such as the azoles.

11.
Acta Crystallogr F Struct Biol Commun ; 79(Pt 6): 137-143, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37223974

RESUMEN

The compound ethyl-adenosyl monophosphate ester (ethyl-AMP) has been shown to effectively inhibit acetyl-CoA synthetase (ACS) enzymes and to facilitate the crystallization of fungal ACS enzymes in various contexts. In this study, the addition of ethyl-AMP to a bacterial ACS from Legionella pneumophila resulted in the determination of a co-crystal structure of this previously elusive structural genomics target. The dual functionality of ethyl-AMP in both inhibiting ACS enzymes and promoting crystallization establishes its significance as a valuable resource for advancing structural investigations of this class of proteins.


Asunto(s)
Genómica , Acetilcoenzima A/metabolismo , Cristalografía por Rayos X , Adenosina Monofosfato/metabolismo
12.
Antimicrob Agents Chemother ; 67(5): e0008123, 2023 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-37097144

RESUMEN

New antifungal therapies are needed for both systemic, invasive infections in addition to superficial infections of mucosal and skin surfaces as well as biofilms associated with medical devices. The resistance of biofilm and biofilm-like growth phases of fungi contributes to the poor efficacy of systemic therapies to nonsystemic infections. Here, we describe the identification and characterization of a novel keto-alkyl-pyridinium scaffold with broad spectrum activity (2 to 16 µg/mL) against medically important yeasts and molds, including clinical isolates resistant to azoles and/or echinocandins. Furthermore, these keto-alkyl-pyridinium agents retain substantial activity against biofilm phase yeast and have direct activity against hyphal A. fumigatus. Although their toxicity precludes use in systemic infections, we found that the keto-alkyl-pyridinium molecules reduce Candida albicans fungal burden in a rat model of vascular catheter infection and reduce Candida auris colonization in a porcine ex vivo model. These initial preclinical data suggest that molecules of this class may warrant further study and development for nonsystemic applications.


Asunto(s)
Candidiasis , Dispositivos de Acceso Vascular , Ratas , Animales , Porcinos , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Candida albicans , Candida , Candida auris , Candidiasis/tratamiento farmacológico , Candidiasis/microbiología , Biopelículas , Pruebas de Sensibilidad Microbiana
13.
Methods Mol Biol ; 2658: 35-42, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37024693

RESUMEN

Human fungal infections caused by molds have been on the rise in recent years. These infections have high mortality rates compared to other fungal infections, and yet treatment options are limited due to resistance to clinical antifungals and lack of broad-spectrum activity against molds. Technical challenges associated with molds have limited large-throughput screening efforts for anti-mold compounds: therefore, we adapted an assay for use with A. fumigatus to help fill the gap in robust screening platforms for these organisms. This assay measures the release of the cytosolic enzyme adenylate kinase (AK) as a measure of fungal cell lysis and can also detect inhibition of germination as a reduction in the secretion of AK during vegetative growth. The ability to detect both lysis and inhibition of germination facilitates the identification of a wide range of compounds with different mechanisms of action, creating a strong screening platform for the identification of novel, anti-mold compounds.


Asunto(s)
Aspergillus fumigatus , Ensayos Analíticos de Alto Rendimiento , Humanos , Pruebas de Sensibilidad Microbiana , Antifúngicos/farmacología , Antifúngicos/uso terapéutico
14.
mBio ; 14(2): e0009523, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-36912640

RESUMEN

Candida albicans is a commensal of the human gastrointestinal tract and a common cause of human fungal disease, including mucosal infections, such as oropharyngeal candidiasis and disseminated infections of the bloodstream and deep organs. We directly compared the in vivo transcriptional profile of C. albicans during oral infection and disseminated infection of the kidney to identify niche specific features. Overall, 97 genes were differentially expressed between the 2 infection sites. Virulence-associated genes, such as hyphae-specific transcripts, were expressed similarly in the 2 sites. Genes expressed during growth in a poor carbon source (ACS1 and PCK1) were upregulated in oral tissue relative to kidney. Most strikingly, C. albicans in oral tissue shows the transcriptional hallmarks of an iron replete state while in the kidney it is in the expected iron starved state. Interestingly, C. albicans expresses genes associated with a low zinc environment in both niches. Consistent with these expression data, strains lacking transcription factors that regulate iron responsive genes (SEF1, HAP5) have no effect on virulence in a mouse model of oral candidiasis. During microbial infection, the host sequesters iron, zinc, and other metal nutrients to suppress growth of the pathogen in a process called nutritional immunity. Our results indicate that C. albicans is subject to iron and zinc nutritional immunity during disseminated infection but not to iron nutritional immunity during oral infection. IMPORTANCE Nutritional immunity is a response by which infected host tissue sequesters nutrients, such as iron, to prevent the microbe from efficiently replicating. Microbial pathogens subjected to iron nutritional immunity express specific genes to compensate for low iron availability. By comparing the gene expression profiles of the common human fungal pathogen Candida albicans in 2 infection sites, we found that C. albicans infecting the kidney has the transcriptional profile of iron starvation. By contrast, the C. albicans expression profile during oropharyngeal infection indicates the fungus is not iron starved. Two transcription factors that activate the transcriptional response to iron starvation are not required for C. albicans virulence during oral infection but are required for disseminated infection of the kidney. Thus, our results indicate that C. albicans is subject to nutritional iron immunity during disseminated infection but not during oropharyngeal infection, and highlight niche specific differences in the host-Candida albicans interaction.


Asunto(s)
Candidiasis Bucal , Candidiasis , Animales , Ratones , Humanos , Candida albicans/metabolismo , Candidiasis/microbiología , Candidiasis Bucal/microbiología , Tracto Gastrointestinal/metabolismo , Factores de Transcripción/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
15.
Elife ; 122023 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-36847358

RESUMEN

Candida albicans is one of the most common human fungal pathogens. C. albicans pathogenesis is tightly linked to its ability to under a morphogenetic transition from typically budding yeast to filamentous forms of hyphae and pseudohyphae. Filamentous morphogenesis is the most intensively studied C. albicans virulence traits; however, nearly all of these studies have been based on in vitro induction of filamentation. Using an intravital imaging assay of filamentation during mammalian (mouse) infection, we have screened a library of transcription factor mutants to identify those that modulate both the initiation and maintenance of filamentation in vivo. We coupled this initial screen with genetic interaction analysis and in vivo transcription profiling to characterize the transcription factor network governing filamentation in infected mammalian tissue. Three core positive (Efg1, Brg1, and Rob1) and two core negative regulators (Nrg1 and Tup1) of filament initiation were identified. No previous systematic analysis of genes affecting the elongation step has been reported and we found that large set of transcription factors affect filament elongation in vivo including four (Hms1, Lys14, War1, Dal81) with no effect on in vitro elongation. We also show that the gene targets of initiation and elongation regulators are distinct. Genetic interaction analysis of the core positive and negative regulators revealed that the master regulator Efg1 primarily functions to mediate relief of Nrg1 repression and is dispensable for expression of hypha-associated genes in vitro and in vivo. Thus, our analysis not only provide the first characterization of the transcriptional network governing C. albicans filamentation in vivo but also revealed a fundamentally new mode of function for Efg1, one of the most widely studied C. albicans transcription factors.


Asunto(s)
Candida albicans , Proteínas Fúngicas , Animales , Ratones , Candida albicans/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Redes Reguladoras de Genes , Hifa/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
16.
mBio ; 14(1): e0276922, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36602308

RESUMEN

Candida albicans, a fungus typically found in the mucosal niche, is frequently detected in biofilms formed on teeth (dental plaque) of toddlers with severe childhood caries, a global public health problem that causes rampant tooth decay. However, knowledge about fungal traits on the tooth surface remains limited. Here, we assess the phylogeny, phenotype, and interkingdom interactions of C. albicans isolated from plaque of diseased toddlers and compare their properties to reference strains, including 529L (mucosal isolate). C. albicans isolates exhibit broad phenotypic variations, but all display cariogenic traits, including high proteinase activity, acidogenicity, and acid tolerance. Unexpectedly, we find distinctive variations in filamentous growth, ranging from hyphal defective to hyperfilamentous. We then investigate the ability of tooth isolates to form interkingdom biofilms with Streptococcus mutans (cariogenic partner) and Streptococcus gordonii (mucosal partner). The hyphal-defective isolate lacks cobinding with S. gordonii, but all C. albicans isolates develop robust biofilms with S. mutans irrespective of their filamentation state. Moreover, either type of C. albicans (hyphae defective or hyperfilamentous) enhances sucrose metabolism and biofilm acidogenicity, creating highly acidic environmental pH (<5.5). Notably, C. albicans isolates show altered transcriptomes associated with pH, adhesion, and cell wall composition (versus reference strains), further supporting niche-associated traits. Our data reveal that C. albicans displays distinctive adaptive mechanisms on the tooth surface and develops interactions with pathogenic bacteria while creating an acidogenic state regardless of fungal morphology, contrasting with interkingdom partnerships in mucosal infections. Human tooth may provide new insights into fungal colonization/adaptation, interkingdom biofilms, and contributions to disease pathogenesis. IMPORTANCE Severe early childhood caries is a widespread global public health problem causing extensive tooth decay and systemic complications. Candida albicans, a fungus typically found in mucosal surfaces, is frequently detected in dental plaque formed on teeth of diseased toddlers. However, the clinical traits of C. albicans isolated from tooth remain underexplored. Here, we find that C. albicans tooth isolates exhibit unique biological and transcriptomic traits. Notably, interkingdom biofilms with S. mutans can be formed irrespective of their filamentation state. Furthermore, tooth isolates commonly share dental caries-promoting functions, including acidogenesis, proteolytic activity, and enhanced sugar metabolism, while displaying increased expression of pH-responsive and adhesion genes. Our findings reveal that C. albicans colonizing human teeth displays distinctive adaptive mechanisms to mediate interkingdom interactions associated with a disease-causing state on a mineralized surface, providing new insights into Candida pathobiology and its role in a costly pediatric disease.


Asunto(s)
Caries Dental , Placa Dental , Humanos , Preescolar , Candida albicans/genética , Candida albicans/metabolismo , Biopelículas , Fenotipo , Streptococcus mutans/metabolismo
17.
bioRxiv ; 2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36711857

RESUMEN

Candida albicans is a commensal of the human gastrointestinal tract and one of the most causes of human fungal disease, including mucosal infections such as oropharyngeal candidiasis and disseminated infections of the bloodstream and deep organs. We directly compared the in vivo transcriptional profile of C. albicans during oral infection and disseminated infection of the kidney to identify niche specific features. Although the expression of a set of environmentally responsive genes were correlated in the two infection sites (Pearson R 2 , 0.6), XXX genes were differentially expressed. Virulence associated genes such as hyphae-specific transcripts were expressed similarly in the two sites. Genes expressed during growth in a poor carbon source ( ACS1 and PCK1 ) were upregulated in oral tissue relative to kidney. Most strikingly, C. albicans in oral tissue shows the transcriptional hallmarks of an iron-replete state while in the kidney it is in the expected iron starved state. Interestingly, C. albicans expresses genes associated with a low zinc environment in both niches. Consistent with these expression data, deletion of two transcription factors that activate iron uptake genes ( SEF1 , HAP5 ) have no effect on virulence in a mouse model of oral candidiasis. During microbial infection, the host sequesters iron and other metal nutrients to suppress growth of the pathogen in a process called nutritional immunity. Our results indicate that C. albicans is subject to iron and zinc nutritional immunity during disseminated infection but is exempted from iron nutritional immunity during oral infection.

18.
bioRxiv ; 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36711909

RESUMEN

New antifungal therapies are needed for both systemic, invasive infections as well as superficial infections of mucosal and skin surfaces as well as biofilms associated with medical devices. The resistance of biofilm and biofilm-like growth phases of fungi contributes to the poor efficacy of systemic therapies to non-systemic infections. Here, we describe the identification and characterization of a novel keto-alkyl-pyridinium scaffold with broad spectrum activity (2-16 µg/mL) against medically important yeasts and moulds, including clinical isolates resistant to azoles and/or echinocandins. Furthermore, these keto-alkyl-pyridinium agents retain substantial activity against biofilm phase yeast and have direct activity against hyphal A. fumigatus . Although their toxicity precludes use in systemic infections, we found that the keto-alkyl-pyridinium molecules reduce C. albicans fungal burden in a rat model of vascular catheter infection and reduce Candida auris colonization in a porcine ex vivo model. These initial pre-clinical data suggest that molecules of this class may warrant further study and development.

19.
Microbiol Spectr ; : e0478322, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36719209

RESUMEN

Cryptococcal meningoencephalitis remains a global health threat with limited treatment options. Currently, the most effective treatment regimens are based on a combination therapy of flucytosine with either amphotericin B or fluconazole. Slow but steady progress is being made toward universal access to flucytosine-based therapies. The broadening access to flucytosine combination therapies will be accompanied by the need for microbiological methods that reliably determine strain susceptibility. This is especially true considering that flucytosine susceptibility can vary widely across clinical isolates. Identifying culture conditions that best represent the host environment are likely optimal and may even be required for accurately determining in vivo flucytosine susceptibility. Here, we report that culture conditions incorporating host-like concentrations of carbon dioxide (CO2) potentiated flucytosine susceptibilities across clinical isolates (10 of 11) that exhibited a range of MIC values under ambient growth conditions (2 to 8 µg/mL) by standard Clinical and Laboratory Standards Institute susceptibility testing. CO2 induced a dose-dependent increase in flucytosine susceptibility between 2- and 8-fold over standard conditions. The CO2-dependent increase in flucytosine susceptibility did not correspond to an increase in fluorouracil susceptibility, indicating a central role for flucytosine uptake through the cytosine permease in the presence of host-like CO2 concentrations. Indeed, the expression of the cytosine permease gene (FCY2) was induced 18- to 60-fold in the mouse lung environment. Therefore, the activity of flucytosine is likely to be very dependent upon host environment and may not be well represented by standard in vitro susceptibility testing. IMPORTANCE Cryptococcus neoformans causes life-threatening infections of the brain. The most effective treatment regimens are based on flucytosine-based combination therapy, which has led to increasingly successful broadening of access to flucytosine globally. Wider use of flucytosine-based therapies for cryptococcal infections will require the ability to reliably determine clinical isolate susceptibilities. We showed that host-like carbon dioxide stress affected flucytosine susceptibility, and this likely occurred through flucytosine uptake. We further showed that the gene encoding the permease, FCY2, and that is responsible for flucytosine uptake was strongly induced during cryptococcal infection. Our data provide insights into the distinctions between the activity of flucytosine in the host environment and during in vitro susceptibility testing.

20.
bioRxiv ; 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38168187

RESUMEN

Candida albicans is one of the most common causes of superficial and invasive fungal disease in humans. Its ability to cause disease has been closely linked to its ability to undergo a morphological transition from budding yeast to filamentous forms (hyphae and pseudohyphae). The ability of C. albicans strains isolated from patients to undergo filamentation varies significantly. In addition, the filamentation phenotypes of mutants involving transcription factors that positively regulate hyphal morphogenesis can also vary from strain to strain. Here, we characterized the virulence, in vitro and in vivo filamentation, and in vitro and in vivo hypha-associated gene expression profiles of four poorly filamenting C. albicans isolates and their corresponding deletion mutants of the repressor of filamentation NRG1. The two most virulent strains, 57055 and 78048, show robust in vivo filamentation while remaining predominately yeast phase exposed to RPMI+10% bovine calf serum at 37°C; the two low virulence strains (94015 and 78042) do not filament well under either condition. Deletion of NRG1 increases hyphae formation in the SC5314 derivative SN250 but only pseudohyphae are formed in the clinical isolates in vivo. Deletion of NRG1 modestly increased the virulence of 78042 which was accompanied by increased expression of hyphae-associated genes without an increase in filamentation. Strikingly, deletion of NRG1 in 78048 reduced filamentation, expression of candidalysin (ECE1) and virulence in vivo without dramatically altering establishment of infection. Thus, the function of NRG1 varies significantly within this set of C. albicans isolates and can actually suppress filamentation in vivo.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...